Артрофиброз локтевого сустава: механизмы и факторы развития
https://doi.org/10.38181/2223-2427-2023-1-7
Аннотация
Дегенеративные заболевания, в основе которых лежит избыточное образование фиброзной ткани, являются распространенной и комплексной проблемой: выраженные и зачастую необратимые изменения приводят к нарушениям функции пораженного органа. Остеоартроз, остеоартрит, артрофиброз — патологические состояния, характеризующиеся хроническим воспалением и избыточной пролиферацией соединительной ткани. Локтевой сустав как наиболее мобильный и анатомически стабильный сустав человека подвержен артрофиброзу и значительному функциональному нарушению, что значительно снижает качество жизни пациента и обусловливает высокую социальную актуальность проблемы. Понимание механизмов развития артрофиброза позволяет определить наиболее эффективные точки приложения лечебных мероприятий, оптимальное время лечения и реабилитационных мероприятий, медикаментозную профилактику рецидива.
Об авторах
К. А. ЕгиазарянРоссия
Егиазарян Карен Альбертович - доктор медицинских наук, профессор, заведующий кафедрой травматологии, ортопедии и военно-полевой хирургии.
117997, Москва, ул. Островитянова, 1
Г. Д. Лазишвили
Россия
Лазишвили Гурам Давидович - доктор медицинских наук, профессор кафедры травматологии, ортопедии и военно-полевой хирургии.
117997, Москва, ул. Островитянова, 1
А. П. Ратьев
Россия
Ратьев Андрей Петрович - доктор медицинских наук, профессор кафедры травматологии, ортопедии и военно-полевой хирургии.
117997, Москва, ул. Островитянова, 1
Д. A. Бадриев
Россия
Бадриев Денис Айдарович - ассистент кафедры травматологии, ортопедии и военно-полевой хирургии.
117997, Москва, ул. Островитянова, 1
Е. А. Жаворонков
Россия
Жаворонков Евгений Александрович - кандидат медицинских наук, доцент кафедры травматологии, ортопедии и военно-полевой хирургии.
117997, Москва, ул. Островитянова, 1
А. А. Лидяев
Россия
Лидяев Антон Анатольевич - ассистент кафедры травматологии, ортопедии и военно-полевой хирургии.
117997, Москва, ул. Островитянова, 1
Список литературы
1. Adolfsson L. Post-traumatic stiff elbow. EFORT Open Rev. 2018;3(5):210—216. https://doi.org/10.1302/2058-5241.3.170062.
2. Masci G, Cazzato G, Milano G, Ciolli G, Malerba G, Perisano C, Greco T, Osvaldo P, Maccauro G, Liuzza F. The stiff elbow: Current concepts. Orthop Rev (Pavia). 2020. Jun 25;12(Suppl 1):8661. https://doi.org/10.4081/or.2020.8661.
3. Nandi S, Maschke S, Evans PJ, Lawton JN. The stiff elbow. Hand. 2009;4(4):368—379. https://doi.org/10.1007/s11552-009-9181-z.
4. Ravalli S, Pulici C, Binetti S, Aglieco A, Vecchio M, Musumeci G. An Overview of the Pathogenesis and Treatment of Elbow Osteoarthritis. J Funct Morphol Kinesiol. 2019. https://doi.org/10.3390/jfmk4020030.
5. Mittal R. Posttraumatic stiff elbow. Indian J Orthop. 2017;51(1):4—13. https://doi.org/10.4103/0019-5413.197514.
6. Zhang D, Nazarian A, Rodriguez EK. Post-traumatic elbow stiffness: Pathogenesis and current treatments. Shoulder Elb. 2020;12(1):38—45. https://doi.org/10.1177/1758573218793903.
7. Ратьев А. П., Егиазарян К. А., Жаворонков Е. А., Мельников В. С. Лечение остеоартроза локтевого сустава. Вопросы реконструктивной и пластической хирургии. 2014;2:50—60.
8. Evans PJ, Nandi S, Maschke S, Hoyen HA, Lawton JN. Prevention and Treatment of Elbow Stiffness. J Hand Surg Am. 2009;34(4):769—778. https://doi.org/10.1016/j.jhsa.2009.02.020.
9. Gracitelli MEC, Guglielmetti CLB, Botelho CAS, Malavolta EA, Assuncao JH, Neto AAF. Surgical treatment of post-traumatic elbow stiffness by wide posterior approach. Rev Bras Ortop. 2020;55(5):570—578. https://doi.org/10.1055/s-0039-1700827.
10. Sardelli M, Tashjian RZ, MacWilliams BA. Functional elbow range of motion for contemporary tasks. J Bone Jt Surg — Ser A. 2011;93(5):471—477. https://doi.org/10.2106/JBJS.I.01633.
11. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626—638. https://doi.org/10.1038/NRI.2016.90.
12. Schrumpf MA, Lyman S, Do H, et al. Incidence of postoperative elbow contracture release in New York State. J Hand Surg Am. 2013;38(9). https://doi.org/10.1016/j.jhsa.2013.05.005.
13. Sanders TL, Kremers HM, Bryan AJ, Kremers WK, Stuart MJ, Krych AJ. Procedural Intervention for Arthrofibrosis after ACL reconstruction: Trends over Two Decades. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):532. https://doi.org/10.1007/S00167-015-3799-X.
14. Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019;7(1). https://doi.org/10.1038/s41413-019-0047-x.
15. Wessel LE, Gu A, Richardson SS, Fufa DT, Osei DA. Elbow contracture following operative fixation of fractures about the elbow. JSES Open Access. 2019;3(4):261—265. https://doi.org/10.1016/j.jses.2019.09.004.
16. Fan D, Wang W, Hildebrand KA, Fan CY. Open arthrolysis for elbow stiffness increases carrying angle but has no impact on functional recovery. BMC Musculoskelet Disord. 2016;17(1). https://doi.org/10.1186/s12891-016-1205-6.
17. Rai S, Zhang Q, Tamang N, Jin S, Wang H, Meng C. Arthroscopic arthrolysis of posttraumatic and non-traumatic elbow stiffness offers comparable clinical outcomes. BMC Musculoskelet Disord. 2019. Jun 15;20(1):285. https://doi.org/10.1186/s12891-019-2666-1.
18. Baranowski A, Schlemmer L, Forster K, Slotina E, Mickan T, Truffel S, Klein A, Mattyasovszky SG, Hofmann A, Ritz U, Rommens PM. Effects of losartan and atorvastatin on the development of early posttraumatic joint stiffness in a rat model. Drug Des Devel Ther. 2019. Jul 30;13:2603—2618. https://doi.org/10.2147/DDDT.S204135.
19. Li X, Zhu L, Wang B, Yuan M, Zhu R. Drugs and targets in fibrosis. Front Pharmacol. 2017;8(NOV):855. https://doi.org/10.3389/fphar.2017.00855.
20. Salib CG, Reina N, Trousdale WH, Limberg AK, Tibbo ME, Jay AG, Robin JX, Turner TW, Jones CR, Paradise CR, Lewallen EA, Bolon B, Carter JM, Berry DJ, Morrey ME, Sanchez-Sotelo J, van Wijnen AJ, Abdel MP. Inhibition of COX-2 Pathway as a Potential Prophylaxis Against Arthrofibrogenesis in a Rabbit Model of Joint Contracture. J Orthop Res. 2019;37(12):2609—2620. https://doi.org/10.1002/jor.24441.
21. Wenzke KE, Cantemir-Stone C, Zhang J, Marsh CB, Huang K. Identifying common genes and networks in multi-organ fibrosis. AMIA Jt Summits Transl Sci Proc. 2012;2012:106—115.
22. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014. May 27;5:123. https://doi.org/10.3389/FPHAR.2014.00123.
23. Li B, Wang JH-C. Fibroblasts and Myofibroblasts in Wound Healing: Force Generation and Measurement. J Tissue Viability. 2011;20(4):108. https://doi.org/10.1016/J.JTV.2009.11.004.
24. Morrey ME, Sanchez-Sotelo J, Lewallen EA, An KN, Grill DE, Steinmann SP, Yao JJ, Salib CG, Trousdale WH, Reina N, Kremers HM, Lewallen DG, van Wijnen AJ, Abdel MP. Intra-articular injection of a substance P inhibitor affects gene expression in a joint contracture model. J Cell Biochem. 2018. Feb 119(2):1326-1336. https://doi.org/10.1002/JCB.26256.
25. Меденец О. Д. Гистология, цитология, эмбриология. Витебск: ВГМУ; 2014, 439 с.
26. Остроушко А. П., Андреев А. А., Лаптиёва А. Ю., Глухов А. А. Коллаген и его применение при лечении ран. Вестник экспериментальной и клинической хирургии. 2021;14(1):85—90. https://doi.org/10.18499/2070-478X-2021-14-1-85-90.
27. McKleroy W, Lee T-H, Atabai K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol — Lung Cell Mol Physiol. 2013;304(11):L709. https://doi.org/10.1152/AJPLUNG.00418.2012.
28. Rockey DC, Bell PD, Hill JA. Fibrosis — A Common Pathway to Organ Injury and Failure. N Engl J Med. 2015;372(12):1138—1149. https://doi.org/10.1056/nejmra1300575.
29. Wynn TA, Barron L. Macrophages: Master Regulators of Inflammation and Fibrosis. Semin Liver Dis. 2010;30(3):245. https://doi.org/10.1055/S-0030-1255354.
30. Хаитов Р. М. Иммунология: структура и функции иммунной системы. М.: ГЭОТАР-Медиа; 2014, 68 с.
31. Wynn TA. Fibrotic disease and the TH1/TH2 paradigm. Nat Rev Immunol. 2004;4(8):583. https://doi.org/10.1038/NRI1412.
32. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol. 2004;85(2):47. https://doi.org/10.1111/J.0959-9673.2004.00377.X.
33. Frangogiannis NG. Transforming growth factor-в in tissue fibrosis. J Exp Med. 2020;217(3). https://doi.org/10.1084/JEM.20190103.
34. Gilbert RWD, Vickaryous MK, Viloria-Petit AM. Signalling by Transforming Growth Factor Beta Isoforms in Wound Healing and Tissue Regeneration. J Dev Biol. 2016;4(2):21. https://doi.org/10.3390/JDB4020021.
35. Bracey NA, Gershkovich B, Chun J, Vilaysane A, Meijndert HC, Wright JR Jr, Fedak PW, Beck PL, Muruve DA, Duff HJ. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J Biol Chem. 2014. Jul 11;289(28):19571—19584. https://doi.org/10.1074/JBC.M114.550624.
36. Cordero MD, Alcocer-Gómez E, Culic O, Carrión AM, de Miguel M, Díaz-Parrado E, Pérez-Villegas EM, BullónP, Battino M, Sánchez-Alcazar JA. NLRP3 inflammasome is activated in fibromyalgia: the effect of coenzyme Q10. Antioxid Redox Signal. 2014. Mar 10;20(8):1169—1180. https://doi.org/10.1089/ARS.2013.5198.
37. Liu RM, Pravia KAG. Oxidative stress and glutathione in TGF-p-mediated fibrogenesis. Free Radic Biol Med. 2010;48(1):1. https://doi.org/10.1016/J.FREERADBIOMED.2009.09.026.
38. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V, Ryffel B, Couillin I. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007. Dec 117(12):3786—3799. https://doi.org/10.1172/JCI32285.
39. Seki E, Schwabe RF. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways. Hepatology. 2015;61(3):1066. https://doi.org/10.1002/HEP.27332.
40. Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, Williams AS, Lambie M, Foster TL, Liao CT, Rice CM, Greenhill CJ, Colmont CS, Hams E, Coles B, Kift-Morgan A, Newton Z, Craig KJ, Williams JD, Williams GT, Davies SJ, Humphreys IR, O'Donnell VB, Taylor PR, Jenkins BJ, Topley N, Jones SA. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014. Jan 16;40(1):40—50. https://doi.org/10.1016/J.IMMUNI.2013.10.022.
41. Barnes TC, Anderson ME, Moots RJ. The Many Faces of Interleukin-6: The Role of IL-6 in Inflammation, Vasculopathy, and Fibrosis in Systemic Sclerosis. Int J Rheumatol. 2011;2011:721608. https://doi.org/10.1155/2011/721608.
42. Luckett-Chastain LR, Cottrell ML, Kawar BM, Ihnat MA, Gallucci RM. Interleukin (IL)-6 modulates transforming growth factor-в receptor I and II (TGF-eRI and II) function in epidermal keratinocytes. Exp Dermatol. 2017;26(8):697. https://doi.org/10.1111/EXD.13260.
43. Ng B, Cook SA, Schafer S. Interleukin-11 signaling underlies fibrosis, parenchymal dysfunction, and chronic inflammation of the airway. Exp Mol Med. 2020;52(12):1871. https://doi.org/10.1038/S12276-020-00531-5.
44. Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, Duan S, Eiwegger T, Eljaszewicz A, Ferstl R, Frei R, Garbani M, Globinska A, Hess L, Huitema C, Kubo T, Komlosi Z, Konieczna P, Kovacs N, Kucuksezer UC, Meyer N, Morita H, Olzhausen J, O'Mahony L, Pezer M, Prati M, Rebane A, Rhyner C, Rinaldi A, Sokolowska M, Stanic B, Sugita K, Treis A, van de Veen W, Wanke K, Wawrzyniak M, Wawrzyniak P, Wirz OF, Zakzuk JS, Akdis CA. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor в, and TNF-a: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016. Oct 138(4):984—1010. https://doi.org/10.1016/j.jaci.2016.06.033.
45. Sullivan DE, Ferris M, Pociask D, Brody AR. Tumor necrosis factor-alpha induces transforming growth factor-beta1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am J Respir Cell Mol Biol. 2005. Apr 32(4):342—349. https://doi.org/10.1165/rcmb.2004-0288OC.
46. Dinarello CA. Anti-inflammatory Agents: Present and Future. Cell. 2010;140(6):935—950. https://doi.org/10.1016/j.cell.2010.02.043.
47. Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE, Kollias G, Aidinis V. Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS One. 2006. Dec 27;1(1):e108. https://doi.org/10.1371/journal.pone.0000108.
48. Snelling SJ, Bas S, Puskas GJ, Dakin SG, Suva D, Finckh A, Gabay C, Hoffmeyer P, Carr AJ, Lubbeke A. Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype. PLoS One. 2017. Apr 11;12(4):e0175109. https://doi.org/10.1371/JOURNAL.PONE.0175109.
49. Luo Y, Xie X, Luo D, Wang Y, Gao Y. The role of halofuginone in fibrosis: more to be explored? J Leukoc Biol. 2017;102(6):1333—1345. https://doi.org/10.1189/JLB.3RU0417-148RR.
50. Гариб Ф. Ю., Ризопулу А. П. Инфламмасомы и воспаление. Российский иммунологический журнал. 2017;4(20):620—626.
51. Dorrington MG, Fraser IDC. NF-KB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front Immunol. 2019;10(APR):705. https://doi.org/10.3389/FIMMU.2019.00705.
52. Ouyang X, Ghani A, Mehal WZ. Inflammasome biology in fibrogenesis. Biochim Biophys Acta. 2013;1832(7):979—988. https://doi.org/10.1016/J.BBADIS.2013.03.020.
53. Zhang WJ, Chen SJ, Zhou SC, Wu SZ, Wang H. Inflammasomes and Fibrosis. Front Immunol. 2021. Jun 11;12:643149. https://doi.org/10.3389/FIMMU.2021.643149.
54. Puente A, Fortea JI, Cabezas J, Arias Loste MT, Iruzubieta P, Llerena S, Huelin P, Fabrega E, Crespo J. LOXL2-A New Target in Antifibrogenic Therapy? Int J Mol Sci. 2019. Apr 2;20(7):1634. https://doi.org/10.3390/IJMS20071634.
55. Shen J, Li S, Chen D. TGF-p signaling and the development of osteoarthritis. Bone Res. 2014;2:14002. https://doi.org/10.1038/BONERES.2014.2.
56. Bufalino C, Hepgul N, Aguglia E, Pariante CM. The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun. 2013;31:31—47. https://doi.org/10.1016/J.BBI.2012.04.009.
57. Huang YP, Fann CY, Chiu YH, Yen MF, Chen LS, Chen HH, Pan SL. Association of diabetes mellitus with the risk of developing adhesive capsulitis of the shoulder: a longitudinal population-based followup study. Arthritis Care Res (Hoboken). 2013. Jul 65(7):1197—1202. https://doi.org/10.1002/ACR.21938.
58. Sun C, Zhou X, Yao C, Poonit K, Fan C, Yan H. The timing of open surgical release of post-traumatic elbow stiffness: A systematic review. Med (United States). 2017;96(49). https://doi.org/10.1097/MD.0000000000009121.
59. Garcia CK. Insights from human genetic studies of lung and organ fibrosis. J Clin Invest. 2018. Jan 2;128(1):36—44. https://doi.org/10.1172/JCI93556.
60. Maurya VK, Jha RK, Kumar V, Joshi A, Chadchan S, Mohan JJ, Laloraya M. Transforming growth factor-beta 1 (TGF-B1) liberation from its latent complex during embryo implantation and its regulation by estradiol in mouse. Biol Reprod. 2013. Oct 10;89(4):84. https://doi.org/10.1095/BIOLREPROD.112.106542.
61. Roved J, Westerdahl H, Hasselquist D. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Horm Behav. 2017;88:95—105. https://doi.org/10.1016/J.YH-BEH.2016.11.017.
Рецензия
Для цитирования:
Егиазарян К.А., Лазишвили Г.Д., Ратьев А.П., Бадриев Д.A., Жаворонков Е.А., Лидяев А.А. Артрофиброз локтевого сустава: механизмы и факторы развития. Хирургическая практика. 2023;(1):81-97. https://doi.org/10.38181/2223-2427-2023-1-7
For citation:
Egiazaryan K.A., Lazishvili G.D., Ratyev A.P., Badriev D.A., Zhavoronkov E.A., Lidyaev A.A. Arthrofibrosis of the elbow joint: mechanisms and factors of development. Surgical practice (Russia). 2023;(1):81-97. (In Russ.) https://doi.org/10.38181/2223-2427-2023-1-7